enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Atomic emission spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Atomic_emission_spectroscopy

    Atomic emission spectroscopy (AES) is a method of chemical analysis that uses the intensity of light emitted from a flame, plasma, arc, or spark at a particular wavelength to determine the quantity of an element in a sample.

  3. Emission spectrum - Wikipedia

    en.wikipedia.org/wiki/Emission_spectrum

    The fact that only certain colors appear in an element's atomic emission spectrum means that only certain frequencies of light are emitted. Each of these frequencies are related to energy by the formula: E photon = h ν , {\displaystyle E_{\text{photon}}=h\nu ,} where E photon {\displaystyle E_{\text{photon}}} is the energy of the photon, ν ...

  4. Atomic spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Atomic_spectroscopy

    With the exception of flames and graphite furnaces, which are most commonly used for atomic absorption spectroscopy, most sources are used for atomic emission spectroscopy. Liquid-sampling sources include flames and sparks (atom source), inductively-coupled plasma (atom and ion source), graphite furnace (atom source), microwave plasma (atom and ...

  5. Flame test - Wikipedia

    en.wikipedia.org/wiki/Flame_test

    The nature of the excited and ground states depends only on the element. Ordinarily, there are no bonds to be broken, and molecular orbital theory is not applicable. The emission spectrum observed in flame test is also the basis of flame emission spectroscopy, atomic emission spectroscopy, and flame photometry. [4] [13]

  6. Balmer series - Wikipedia

    en.wikipedia.org/wiki/Balmer_series

    The "visible" hydrogen emission spectrum lines in the Balmer series. H-alpha is the red line at the right. Four lines (counting from the right) are formally in the visible range. Lines five and six can be seen with the naked eye, but are considered to be ultraviolet as they have wavelengths less than 400 nm.

  7. Hydrogen spectral series - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_spectral_series

    There are emission lines from hydrogen that fall outside of these series, such as the 21 cm line. These emission lines correspond to much rarer atomic events such as hyperfine transitions. [1] The fine structure also results in single spectral lines appearing as two or more closely grouped thinner lines, due to relativistic corrections. [2]

  8. Inductively coupled plasma atomic emission spectroscopy

    en.wikipedia.org/wiki/Inductively_coupled_plasma...

    It is a type of emission spectroscopy that uses the inductively coupled plasma to produce excited atoms and ions that emit electromagnetic radiation at wavelengths characteristic of a particular element. [1] The plasma is a high temperature source of ionised source gas (often argon).

  9. Stark effect - Wikipedia

    en.wikipedia.org/wiki/Stark_effect

    The Stark effect can be observed both for emission and absorption lines. The latter is sometimes called the inverse Stark effect , but this term is no longer used in the modern literature. Lithium Rydberg -level spectrum as a function of the electric field near n = 15 for m = 0.