enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    A smaller fraction (about four per million) of free neutrons decay in so-called "two-body (neutron) decays", in which a proton, electron and antineutrino are produced as usual, but the electron fails to gain the 13.6 eV necessary energy to escape the proton (the ionization energy of hydrogen), and therefore simply remains bound to it, forming a ...

  3. Discovery of the neutron - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_the_neutron

    [8]: 25 Nevertheless, Rutherford had conjectured the existence of the deuteron, a +1 charge particle of mass 2, and the neutron, a neutral particle of mass 1. [32]: 396 The former is the nucleus of deuterium, discovered in 1931 by Harold Urey. [34] The mass of the hypothetical neutral particle would be little different from that of the proton.

  4. Atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Atomic_nucleus

    Protons define the entire charge of a nucleus, and hence its chemical identity. Neutrons are electrically neutral, but contribute to the mass of a nucleus to nearly the same extent as the protons. Neutrons can explain the phenomenon of isotopes (same atomic number with different atomic mass). The main role of neutrons is to reduce electrostatic ...

  5. Nucleon magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Nucleon_magnetic_moment

    Since neutrons are neutral particles, they do not have to overcome Coulomb repulsion as they approach charged targets, unlike protons and alpha particles. [12] Neutrons can deeply penetrate matter. [12] The magnetic moment of the neutron has therefore been exploited to probe the properties of matter using scattering or diffraction techniques. [12]

  6. Neutron radiation - Wikipedia

    en.wikipedia.org/wiki/Neutron_radiation

    Neutron radiation is a form of ionizing radiation that presents as free neutrons.Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides—which, in turn, may trigger further neutron radiation.

  7. Charge radius - Wikipedia

    en.wikipedia.org/wiki/Charge_radius

    The heuristic explanation for why the squared charge radius of a neutron is negative, despite its overall neutral electric charge, is that this is the case because its negatively charged down quarks are, on average, located in the outer part of the neutron, while its positively charged up quark is, on average, located towards the center of the ...

  8. Nucleon - Wikipedia

    en.wikipedia.org/wiki/Nucleon

    An up quark has electric charge ⁠+ + 2 / 3 ⁠ e, and a down quark has charge ⁠− + 1 / 3 ⁠ e, so the summed electric charges of proton and neutron are +e and 0, respectively. [a] Thus, the neutron has a charge of 0 (zero), and therefore is electrically neutral; indeed, the term "neutron" comes from the fact that a neutron is ...

  9. Shape of the atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_atomic_nucleus

    The largest stable nuclide, lead-208, has an RMS charge radius of 5.5012 fm, and the largest unstable nuclide americium-243 has an experimental RMS charge radius of 5.9048 fm. [2] The main source of nuclear radius values derives from elastic scattering experiments (electron and muon), but nuclear radii data also come from experiments on ...