enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's formula for a general angle. Euler's identity is a special case of Euler's formula, which states that for any real number x, = ⁡ + ⁡ where the inputs of the trigonometric functions sine and cosine are given in radians. In particular, when x = π,

  3. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.

  4. Euler's constant - Wikipedia

    en.wikipedia.org/wiki/Euler's_constant

    The area of the blue region converges to Euler's constant. Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (γ), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

  5. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  6. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    Since e is an irrational number (see proof that e is irrational), it cannot be represented as the quotient of two integers, but it can be represented as a continued fraction. Using calculus, e may also be represented as an infinite series, infinite product, or other types of limit of a sequence.

  7. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a [4] (with the area being negative when 0 < a < 1). The simplicity of this definition, which is matched in many ...

  8. Euler's continued fraction formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_continued_fraction...

    Euler derived the formula as connecting a finite sum of products with a finite continued fraction. (+ (+ (+))) = + + + + = + + + +The identity is easily established by induction on n, and is therefore applicable in the limit: if the expression on the left is extended to represent a convergent infinite series, the expression on the right can also be extended to represent a convergent infinite ...

  9. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    The definition of e x as the exponential function allows defining b x for every positive real numbers b, in terms of exponential and logarithm function. Specifically, the fact that the natural logarithm ln(x) is the inverse of the exponential function e x means that one has = ⁡ (⁡) = ⁡ for every b > 0.