enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    Heat convection occurs when the bulk flow of a fluid (gas or liquid) carries its heat through the fluid. All convective processes also move heat partly by diffusion, as well. The flow of fluid may be forced by external processes, or sometimes (in gravitational fields) by buoyancy forces caused when thermal energy expands the fluid (for example ...

  3. Freezing - Wikipedia

    en.wikipedia.org/wiki/Freezing

    Most liquids freeze by crystallization, formation of crystalline solid from the uniform liquid. This is a first-order thermodynamic phase transition, which means that as long as solid and liquid coexist, the temperature of the whole system remains very nearly equal to the melting point due to the slow removal of heat when in contact with air, which is a poor heat conductor.

  4. Heat-transfer fluid - Wikipedia

    en.wikipedia.org/wiki/Heat-transfer_fluid

    Heat Capacity: A fluid’s heat capacity indicates how much thermal energy it can transport and store, impacting the efficiency of the heat transfer process. [ 2 ] Thermal Conductivity and Thermal Diffusivity : These properties influence the rate at which heat is transferred through the fluid, affecting how quickly a system can respond to ...

  5. Convection (heat transfer) - Wikipedia

    en.wikipedia.org/wiki/Convection_(Heat_transfer)

    In many real-life applications (e.g. heat losses at solar central receivers or cooling of photovoltaic panels), natural and forced convection occur at the same time (mixed convection). [4] Internal and external flow can also classify convection. Internal flow occurs when a fluid is enclosed by a solid boundary such as when flowing through a pipe.

  6. Heat transfer physics - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_physics

    Conduction heat flux q k for ideal gas is derived with the gas kinetic theory or the Boltzmann transport equations, and the thermal conductivity is =, -, where u f 2 1/2 is the RMS (root mean square) thermal velocity (3k B T/m from the MB distribution function, m: atomic mass) and τ f-f is the relaxation time (or intercollision time period ...

  7. Convection - Wikipedia

    en.wikipedia.org/wiki/Convection

    At the heat source of a system of natural circulation, the heated fluid becomes lighter than the fluid surrounding it, and thus rises. At the heat sink, the nearby fluid becomes denser as it cools, and is drawn downward by gravity. Together, these effects create a flow of fluid from the heat source to the heat sink and back again.

  8. Mpemba effect - Wikipedia

    en.wikipedia.org/wiki/Mpemba_effect

    They showed the time for freezing to start was longest with an initial temperature of 25 °C (77 °F) and that it was much less at around 90 °C (194 °F). They ruled out loss of liquid volume by evaporation and the effect of dissolved air as significant factors. In their setup, most heat loss was found to be from the liquid surface. [10]

  9. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    The law holds well for forced air and pumped liquid cooling, where the fluid velocity does not rise with increasing temperature difference. Newton's law is most closely obeyed in purely conduction-type cooling. However, the heat transfer coefficient is a function of the temperature difference in natural convective (buoyancy driven) heat transfer.