Search results
Results from the WOW.Com Content Network
Nanotechnology, a relatively new field of science and engineering, has shown promise to have a significant impact on the energy industry. Nanotechnology is defined as any technology that contains particles with one dimension under 100 nanometers in length. For scale, a single virus particle is about 100 nanometers wide.
The energy applications of nanotechnology relates to using the small size of nanoparticles to store energy more efficiently. This promotes the use of renewable energy through green nanotechnology by generating, storing, and using energy without emitting harmful greenhouse gases such as carbon dioxide.
Nano Energy is a monthly peer-reviewed scientific journal covering nanotechnology and energy. It was established in 2012 and is published by Elsevier. The editor-in-chief is Zhong Lin Wang (Georgia Institute of Technology).
Nanotechnology may be able to create new materials and devices with diverse applications, such as in nanomedicine, nanoelectronics, biomaterials energy production, and consumer products. However, nanotechnology raises issues, including concerns about the toxicity and environmental impact of nanomaterials, [ 9 ] and their potential effects on ...
Using nanotechnology to manufacture of batteries offers the following benefits: [9] Increasing the available power from a battery and decreasing the time required to recharge a battery. These benefits are achieved by coating the surface of an electrode with nanoparticles, increasing the surface area of the electrode thereby allowing more ...
The most advanced nanotechnology projects related to energy are: storage, conversion, manufacturing improvements by reducing materials and process rates, energy saving (by better thermal insulation for example), and enhanced renewable energy sources. One major project that is being worked on is the development of nanotechnology in solar cells. [6]
Nanoelectronics – use of nanotechnology on electronic components, including transistors so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively. Nanomechanics – branch of nanoscience studying fundamental mechanical (elastic, thermal and kinetic) properties of physical systems at the nanometer ...
As the confinement energy depends on the quantum dot's size, both absorption onset and fluorescence emission can be tuned by changing the size of the quantum dot during its synthesis. The larger the dot, the redder (lower-energy) its absorption onset and fluorescence spectrum. Conversely, smaller dots absorb and emit bluer (higher-energy) light.