Search results
Results from the WOW.Com Content Network
The following are among the properties of log-concave distributions: If a density is log-concave, so is its cumulative distribution function (CDF). If a multivariate density is log-concave, so is the marginal density over any subset of variables. The sum of two independent log-concave random variables is log-concave. This follows from the fact ...
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
A Poisson compounded with Log(p)-distributed random variables has a negative binomial distribution. In other words, if N is a random variable with a Poisson distribution , and X i , i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log( p ) distribution, then
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
Another generalized log-logistic distribution is the log-transform of the metalog distribution, in which power series expansions in terms of are substituted for logistic distribution parameters and . The resulting log-metalog distribution is highly shape flexible, has simple closed form PDF and quantile function , can be fit to data with linear ...
Some sources on CDF consider core damage and core meltdown to be the same thing, and different methods of measurement are used between industries and nations, so the primary value of the CDF number is in managing the risk of core accidents within a system and not necessarily to provide large-scale statistics. [3] [4]
The probability density function is the partial derivative of the cumulative distribution function: (;,) = (;,) = / (+ /) = (() / + / ()) = ().When the location parameter μ is 0 and the scale parameter s is 1, then the probability density function of the logistic distribution is given by