Search results
Results from the WOW.Com Content Network
Aircraft lack the symmetry between pitch and yaw, so that directional stability in yaw is derived from a different set of stability derivatives. The yaw plane equivalent to the short period pitch oscillation, which describes yaw plane directional stability is called Dutch roll.
A yaw rotation is a movement around the yaw axis of a rigid body that changes the direction it is pointing, to the left or right of its direction of motion. The yaw rate or yaw velocity of a car, aircraft, projectile or other rigid body is the angular velocity of this rotation, or rate of change of the heading angle when the aircraft is horizontal.
The yaw axis has its origin at the center of gravity and is directed towards the bottom of the aircraft, perpendicular to the wings and to the fuselage reference line. Motion about this axis is called yaw. A positive yawing motion moves the nose of the aircraft to the right. [1] [2] The rudder is the primary control of yaw. [3]
Yaw is known as "heading". A fixed-wing aircraft increases or decreases the lift generated by the wings when it pitches nose up or down by increasing or decreasing the angle of attack (AOA). The roll angle is also known as bank angle on a fixed-wing aircraft, which usually "banks" to change the horizontal direction of flight.
An attitude and heading reference system (AHRS) consists of sensors on three axes that provide attitude information for aircraft, including roll, pitch, and yaw.These are sometimes referred to as MARG (Magnetic, Angular Rate, and Gravity) [1] sensors and consist of either solid-state or microelectromechanical systems (MEMS) gyroscopes, accelerometers and magnetometers.
Instruments used to plot a course on a nautical chart. In navigation, the course of a watercraft or aircraft is the cardinal direction in which the craft is to be steered.The course is to be distinguished from the heading, which is the direction where the watercraft's bow or the aircraft's nose is pointed.
Heading, elevation and bank angles (Z-Y’-X’’) for an aircraft. The aircraft's pitch and yaw axes Y and Z are not shown, and its fixed reference frame xyz has been shifted backwards from its center of gravity (preserving angles) for clarity. Axes named according to the air norm DIN 9300
Using ailerons causes adverse yaw, meaning the nose of the aircraft yaws in a direction opposite to the aileron application. When moving the aileron control to bank the wings to the left, adverse yaw moves the nose of the aircraft to the right. Adverse yaw is most pronounced in low-speed aircraft with long wings, such as gliders.