enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    It is also possible to describe all conic sections in terms of a single focus and a single directrix, which is a given line not containing the focus. A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e.

  3. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    It is shown above that this distance equals the focal length of the parabola, which is the distance from the vertex to the focus. The focus and the point F are therefore equally distant from the vertex, along the same line, which implies that they are the same point. Therefore, the point F, defined above, is the focus of the parabola.

  4. Universal parabolic constant - Wikipedia

    en.wikipedia.org/wiki/Universal_parabolic_constant

    The universal parabolic constant is the red length divided by the green length. The universal parabolic constant is a mathematical constant.. It is defined as the ratio, for any parabola, of the arc length of the parabolic segment formed by the latus rectum to the focal parameter.

  5. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    A parabola has only one focus, and can be considered as a limit curve of a set of ellipses (or a set of hyperbolas), where one focus and one vertex are kept fixed, while the second focus is moved to infinity. If this transformation is performed on each conic in an orthogonal net of confocal ellipses and hyperbolas, the limit is an orthogonal ...

  6. Translation of axes - Wikipedia

    en.wikipedia.org/wiki/Translation_of_axes

    Given the equation + + =, by using a translation of axes, determine whether the locus of the equation is a parabola, ellipse, or hyperbola. Determine foci (or focus), vertices (or vertex), and eccentricity. Solution: To complete the square in x and y, write the equation in the form

  7. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    A parabola can be obtained as the limit of a sequence of ellipses where one focus is kept fixed as the other is allowed to move arbitrarily far away in one direction, keeping fixed. Thus a and b tend to infinity, a faster than b. The length of the semi-minor axis could also be found using the following formula: [2]

  8. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...

  9. Dandelin spheres - Wikipedia

    en.wikipedia.org/wiki/Dandelin_spheres

    However, a parabola has only one Dandelin sphere, and thus has only one directrix. Using the Dandelin spheres, it can be proved that any conic section is the locus of points for which the distance from a point (focus) is proportional to the distance from the directrix. [ 7 ]