Search results
Results from the WOW.Com Content Network
Geometrically, the derivative at a point is the slope of the tangent line to the graph of the function at that point, provided that the derivative exists and is defined at that point. For a real-valued function of a single real variable, the derivative of a function at a point generally determines the best linear approximation to the function ...
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
For the graph of a function f of differentiability class C 2 (its first derivative f', and its second derivative f'', exist and are continuous), the condition f'' = 0 can also be used to find an inflection point since a point of f'' = 0 must be passed to change f'' from a positive value (concave upward) to a negative value (concave downward) or ...
The first fundamental theorem says that the value of any function is the rate of change (the derivative) of its integral from a fixed starting point up to any chosen end point. Continuing the above example using a velocity as the function, you can integrate it from the starting time up to any given time to obtain a distance function whose ...
An illustration of the five-point stencil in one and two dimensions (top, and bottom, respectively). In numerical analysis, given a square grid in one or two dimensions, the five-point stencil of a point in the grid is a stencil made up of the point itself together with its four "neighbors".
The roots, stationary points, inflection point and concavity of a cubic polynomial x 3 − 6x 2 + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives. The critical points of a cubic function are its stationary points , that is the points where the slope of the function is zero. [ 2 ]
The first-derivative test depends on the "increasing–decreasing test", which is itself ultimately a consequence of the mean value theorem. It is a direct consequence of the way the derivative is defined and its connection to decrease and increase of a function locally, combined with the previous section.
The complex-step derivative formula is only valid for calculating first-order derivatives. A generalization of the above for calculating derivatives of any order employs multicomplex numbers , resulting in multicomplex derivatives.