Search results
Results from the WOW.Com Content Network
It is divisible by 3 and by 5. [6] 390: it is divisible by 3 and by 5. 16: If the thousands digit is even, the number formed by the last three digits must be divisible by 16. 254,176: 176. If the thousands digit is odd, the number formed by the last three digits must be 8 times an odd number. 3408: 408 = 8 × 51.
2004 – Area of the 24th crystagon [5] 2005 – A vertically symmetric number; 2006 – number of subsets of {1,2,3,4,5,6,7,8,9,10,11} with relatively prime elements [6] 2007 – 2 2007 + 2007 2 is prime [7] 2008 – number of 4 × 4 matrices with nonnegative integer entries and row and column sums equal to 3 [8] 2009 = 7 4 − 7 3 − 7 2
For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n , then so is − m . The tables below only list positive divisors.
In the past 500 years, there was no leap day in 1700, 1800 and 1900, but 2000 had one. In the next 500 years, if the practice is followed, there will be no leap day in 2100, 2200, 2300 and 2500 ...
A natural number is divisible by three if the sum of its digits in base 10 is divisible by 3. For example, the number 21 is divisible by three (3 times 7) and the sum of its digits is 2 + 1 = 3. Because of this, the reverse of any number that is divisible by three (or indeed, any permutation of its digits) is also divisible by three. For ...
The titles of articles about numbers should be spelled out, and a link should be added to the article for the "year" with the same number. Numbers over 100 that are not divisible by 100 (101-199, 201-299) should include the word "and". (See discussion at Talk:One hundred and eleven. GUllman
The digit the farthest to the right (which is multiplied by 1) is the check digit, chosen to make the sum correct. It may need to have the value 10, which is represented as the letter X. For example, take the ISBN 0-201-53082-1: The sum of products is 0×10 + 2×9 + 0×8 + 1×7 + 5×6 + 3×5 + 0×4 + 8×3 + 2×2 + 1×1 = 99 ≡ 0 (mod 11). So ...
The smallest odd integer with abundancy index exceeding 3 is 1018976683725 = 3 3 × 5 2 × 7 2 × 11 × 13 × 17 × 19 × 23 × 29. [8] If p = (p 1, ..., p n) is a list of primes, then p is termed abundant if some integer composed only of primes in p is abundant. A necessary and sufficient condition for this is that the product of p i /(p i − ...