Search results
Results from the WOW.Com Content Network
It is first determined whether M is indeed greater than 1.0 by calculating M from the subsonic equation. If M is greater than 1.0 at that point, then the value of M from the subsonic equation is used as the initial condition for fixed point iteration of the supersonic equation, which usually converges very rapidly. [ 8 ]
The micrometre (SI symbol: μm) is a unit of length in the metric system equal to 10 −6 metres ( 1 / 1 000 000 m = 0. 000 001 m). To help compare different orders of magnitude , this section lists some items with lengths between 10 −6 and 10 −5 m (between 1 and 10 micrometers , or μm).
The height of the hydraulic jump, similar to length, is useful to know when designing waterway structures like settling basins or spillways. The height of the hydraulic jump is simply the difference in flow depths prior to and after the hydraulic jump. The height can be determined using the Froude number and upstream energy. Equations:
As an approximation, the roughness length is approximately one-tenth of the height of the surface roughness elements. For example, short grass of height 0.01 meters has a roughness length of approximately 0.001 meters. Surfaces are rougher if they have more protrusions. Forests have much larger roughness lengths than tundra, for example.
The power law is often used in wind power assessments [4] [5] where wind speeds at the height of a turbine ( 50 metres) must be estimated from near surface wind observations (~10 metres), or where wind speed data at various heights must be adjusted to a standard height [6] prior to use.
Peak ground acceleration can be expressed in fractions of g (the standard acceleration due to Earth's gravity, equivalent to g-force) as either a decimal or percentage; in m/s 2 (1 g = 9.81 m/s 2); [7] or in multiples of Gal, where 1 Gal is equal to 0.01 m/s 2 (1 g = 981 Gal).
In fractions like "2 nanometers per meter" (2 n m / m = 2 nano = 2×10 −9 = 2 ppb = 2 × 0.000 000 001), so the quotients are pure-number coefficients with positive values less than or equal to 1. When parts-per notations, including the percent symbol (%), are used in regular prose (as opposed to mathematical expressions), they are still pure ...
Consider a beam whose cross-sectional area increases in one dimension, e.g. a thin-walled round beam or a rectangular beam whose height but not width is varied. By combining the area and density formulas, we can see that the radius or height of this beam will vary with approximately the inverse of the density for a given mass.