Search results
Results from the WOW.Com Content Network
The three splitters of a triangle all intersect each other at the Nagel point of the triangle. A cleaver of a triangle is a segment from the midpoint of a side of a triangle to the opposite side such that the perimeter is divided into two equal lengths. The three cleavers of a triangle all intersect each other at the triangle's Spieker center.
A quadrilateral is a square if and only if it is both a rhombus and a rectangle (i.e., four equal sides and four equal angles). Oblong: longer than wide, or wider than long (i.e., a rectangle that is not a square). [5] Kite: two pairs of adjacent sides are of equal length.
Three of them are the medians, which are the only area bisectors that go through the centroid. Three other area bisectors are parallel to the triangle's sides. Any line through a triangle that splits both the triangle's area and its perimeter in half goes through the triangle's incenter. There can be one, two, or three of these for any given ...
The three splitters concur at the Nagel point of the triangle. A cleaver of a triangle is a line segment that bisects the perimeter of the triangle and has one endpoint at the midpoint of one of the three sides. So any cleaver, like any splitter, divides the triangle into two paths each of whose length equals the semiperimeter.
The tangential triangle of a reference triangle (other than a right triangle) is the triangle whose sides are on the tangent lines to the reference triangle's circumcircle at its vertices. [ 64 ] As mentioned above, every triangle has a unique circumcircle, a circle passing through all three vertices, whose center is the intersection of the ...
The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);
A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths , , . Letting be the semiperimeter of the triangle, = (+ +), the area is [1]
If the lengths of the three sides are known then Heron's formula can be used: () () where a, b, c are the sides of the triangle, and = (+ +) is half of its perimeter. [2] If an angle and its two included sides are given, the area is 1 2 a b sin ( C ) {\displaystyle {\tfrac {1}{2}}ab\sin(C)} where C is the given angle and a and b are its ...