Search results
Results from the WOW.Com Content Network
A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).
Hyperbola: the midpoints of parallel chords lie on a line. Hyperbola: the midpoint of a chord is the midpoint of the corresponding chord of the asymptotes. The midpoints of parallel chords of a hyperbola lie on a line through the center (see diagram). The points of any chord may lie on different branches of the hyperbola.
Euler’s work made the natural logarithm a standard mathematical tool, and elevated mathematics to the realm of transcendental functions. The hyperbolic coordinates are formed on the original picture of G. de Saint-Vincent, which provided the quadrature of the hyperbola, and transcended the limits of algebraic functions.
The curve represents xy = 1. A hyperbolic angle has magnitude equal to the area of the corresponding hyperbolic sector, which is in standard position if a = 1. In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane.
For example, when a = 0, then (b,c) is a point on the standard hyperbola. More generally, there is a hypersurface in M(2,R) of hyperbolic units, any one of which serves in a basis to represent the split-complex numbers as a subring of M(2,R). [3] [better source needed]
A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola.
When the conic section is given in the general quadratic form + + + + + =, the following formula gives the eccentricity e if the conic section is not a parabola (which has eccentricity equal to 1), not a degenerate hyperbola or degenerate ellipse, and not an imaginary ellipse: [2]
The generalised hyperbolic distribution (GH) is a continuous probability distribution defined as the normal variance-mean mixture where the mixing distribution is the generalized inverse Gaussian distribution (GIG).