Ads
related to: counterexample geometry examples
Search results
Results from the WOW.Com Content Network
In logic a counterexample disproves the generalization, and does so rigorously in the fields of mathematics and philosophy. [1] For example, the fact that "student John Smith is not lazy" is a counterexample to the generalization "students are lazy", and both a counterexample to, and disproof of, the universal quantification "all students are ...
The assumption that if there is a counterexample, there is a minimal counterexample, is based on a well-ordering of some kind. The usual ordering on the natural numbers is clearly possible, by the most usual formulation of mathematical induction; but the scope of the method can include well-ordered induction of any kind.
One of many examples from algebraic geometry in the first half of the 20th century: Severi (1946) claimed that a degree-n surface in 3-dimensional projective space has at most (n+2 3 )−4 nodes, B. Segre pointed out that this was wrong; for example, for degree 6 the maximum number of nodes is 65, achieved by the Barth sextic , which is more ...
Appel and Haken's approach started by showing that there is a particular set of 1,936 maps, each of which cannot be part of a smallest-sized counterexample to the four color theorem (i.e., if they did appear, one could make a smaller counter-example).
Models And Counter-Examples (Mace) is a model finder. [1] Most automated theorem provers try to perform a proof by refutation on the clause normal form of the proof problem, by showing that the combination of axioms and negated conjecture can never be simultaneously true, i.e. does not have a model. A model finder such as Mace, on the other ...
Counterexamples in Topology (1970, 2nd ed. 1978) is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr. In the process of working on problems like the metrization problem , topologists (including Steen and Seebach) have defined a wide variety of topological properties .
The result is shown using Martin's maximum axiom, while Mar Jiménez and José Pedro Moreno (1997) had presented a counterexample assuming CH. As shown by Ilijas Farah [23] and N. Christopher Phillips and Nik Weaver, [24] the existence of outer automorphisms of the Calkin algebra depends on set theoretic assumptions beyond ZFC.
For example, a particular statement may be shown to imply the law of the excluded middle. An example of a Brouwerian counterexample of this type is Diaconescu's theorem, which shows that the full axiom of choice is non-constructive in systems of constructive set theory, since the axiom of choice implies the law of excluded middle in such systems.
Ads
related to: counterexample geometry examples