Search results
Results from the WOW.Com Content Network
This is an example of a non-linear functional. The Riemann integral is a linear functional on the vector space of functions defined on [a, b] that are Riemann-integrable from a to b. In mathematics, a functional is a certain type of function. The exact definition of the term varies depending on the subfield (and sometimes even the author).
The reactivity of a functional group can be modified by other functional groups nearby. Functional group interconversion can be used in retrosynthetic analysis to plan organic synthesis. A functional group is a group of atoms in a molecule with distinctive chemical properties, regardless of the other atoms in the molecule. The atoms in a ...
Group theory has three main historical sources: number theory, the theory of algebraic equations, and geometry.The number-theoretic strand was begun by Leonhard Euler, and developed by Gauss's work on modular arithmetic and additive and multiplicative groups related to quadratic fields.
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, inner product, norm, or topology) and the linear functions defined on these spaces and suitably respecting these structures.
In mathematics, specifically category theory, a functor is a mapping between categories.Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces.
In mathematics, some functions or groups of functions are important enough to deserve their own names. This is a listing of articles which explain some of these functions in more detail. This is a listing of articles which explain some of these functions in more detail.
The functional notation requires that a name is given to the function, which, in the case of a unspecified function is often the letter f. Then, the application of the function to an argument is denoted by its name followed by its argument (or, in the case of a multivariate functions, its arguments) enclosed between parentheses, such as in
The manipulations of the Rubik's Cube form the Rubik's Cube group.. In mathematics, a group is a set with an operation that associates an element of the set to every pair of elements of the set (as does every binary operation) and satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.