Search results
Results from the WOW.Com Content Network
The exponential of a variable is denoted or , with the two notations used interchangeably. It is called exponential because its argument can be seen as an exponent to which a constant number e ≈ 2.718, the base, is raised. There are several other definitions of the exponential function, which are all equivalent ...
The exponential function e x for real values of x may be defined in a few different equivalent ways (see Characterizations of the exponential function). Several of these methods may be directly extended to give definitions of e z for complex values of z simply by substituting z in place of x and using the complex algebraic operations. In ...
Nicolas Chuquet used a form of exponential notation in the 15th century, for example 12 2 to represent 12x 2. [11] This was later used by Henricus Grammateus and Michael Stifel in the 16th century. In the late 16th century, Jost Bürgi would use Roman numerals for exponents in a way similar to that of Chuquet, for example iii 4 for 4 x 3 .
7.5 Exponential and logarithms. 8 See also. 9 Notes. ... The following is a useful property to calculate low-integer-order polylogarithms recursively in closed form:
Exponential function: raises a fixed number to a variable power. Hyperbolic functions: formally similar to the trigonometric functions. Inverse hyperbolic functions: inverses of the hyperbolic functions, analogous to the inverse circular functions. Logarithms: the inverses of exponential functions; useful to solve equations involving exponentials.
The number n is called the exponent and the expression is known formally as exponentiation of b by n or the exponential of n with base b. It is more commonly expressed as "the nth power of b", "b to the nth power" or "b to the power n". For example, the fourth power of 10 is 10,000 because 10 4 = 10 × 10 × 10 × 10 = 10,000.
In polar form, if and are real numbers then the conjugate of is . This can be shown using Euler's formula . The product of a complex number and its conjugate is a real number: a 2 + b 2 {\displaystyle a^{2}+b^{2}} (or r 2 {\displaystyle r^{2}} in polar coordinates ).
For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x 2 − 2 = 0. The golden ratio (denoted φ {\displaystyle \varphi } or ϕ {\displaystyle \phi } ) is another irrational number that is not transcendental, as it is a root of the polynomial equation x 2 − ...