enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bernoulli trial - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_trial

    A representation of the possible outcomes of flipping a fair coin four times in terms of the number of heads. As can be seen, the probability of getting exactly two heads in four flips is 6/16 = 3/8, which matches the calculations. For this experiment, let a heads be defined as a success and a tails as a failure.

  3. Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Checking_whether_a_coin_is...

    (Note: r is the probability of obtaining heads when tossing the same coin once.) Plot of the probability density f(r | H = 7, T = 3) = 1320 r 7 (1 − r) 3 with r ranging from 0 to 1. The probability for an unbiased coin (defined for this purpose as one whose probability of coming down heads is somewhere between 45% and 55%)

  4. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    Consider a simple statistical model of a coin flip: a single parameter that expresses the "fairness" of the coin. The parameter is the probability that a coin lands heads up ("H") when tossed. can take on any value within the range 0.0 to 1.0. For a perfectly fair coin, =. Imagine flipping a fair coin twice, and observing two heads in two ...

  5. Bernoulli process - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_process

    For example, if x represents a sequence of coin flips, then the associated Bernoulli sequence is the list of natural numbers or time-points for which the coin toss outcome is heads. So defined, a Bernoulli sequence Z x {\displaystyle \mathbb {Z} ^{x}} is also a random subset of the index set, the natural numbers N {\displaystyle \mathbb {N} } .

  6. Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_distribution

    It can be used to represent a (possibly biased) coin toss where 1 and 0 would represent "heads" and "tails", respectively, and p would be the probability of the coin landing on heads (or vice versa where 1 would represent tails and p would be the probability of tails). In particular, unfair coins would have /

  7. Gambler's fallacy - Wikipedia

    en.wikipedia.org/wiki/Gambler's_fallacy

    If a fair coin is flipped 21 times, the probability of 21 heads is 1 in 2,097,152. The probability of flipping a head after having already flipped 20 heads in a row is ⁠ 1 / 2 ⁠. Assuming a fair coin: The probability of 20 heads, then 1 tail is 0.5 20 × 0.5 = 0.5 21; The probability of 20 heads, then 1 head is 0.5 20 × 0.5 = 0.5 21

  8. Coin flipping - Wikipedia

    en.wikipedia.org/wiki/Coin_flipping

    Coin flipping, coin tossing, or heads or tails is the practice of throwing a coin in the air and checking which side is showing when it lands, in order to randomly choose between two alternatives. It is a form of sortition which inherently has two possible outcomes.

  9. Law of large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_large_numbers

    For example, a fair coin toss is a Bernoulli trial. When a fair coin is flipped once, the theoretical probability that the outcome will be heads is equal to 1 ⁄ 2. Therefore, according to the law of large numbers, the proportion of heads in a "large" number of coin flips "should be" roughly 1 ⁄ 2.