enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    The refractive index, , can be seen as the factor by which the speed and the wavelength of the radiation are reduced with respect to their vacuum values: the speed of light in a medium is v = c/n, and similarly the wavelength in that medium is λ = λ 0 /n, where λ 0 is the wavelength of that light in vacuum.

  3. Refractive index and extinction coefficient of thin film ...

    en.wikipedia.org/wiki/Refractive_index_and...

    Spectroscopic reflectance of a thin film on a substrate represents the ratio of the intensity of light reflected from the sample to the intensity of incident light, measured over a range of wavelengths, whereas spectroscopic transmittance, T(λ), represents the ratio of the intensity of light transmitted through the sample to the intensity of ...

  4. List of refractive indices - Wikipedia

    en.wikipedia.org/wiki/List_of_refractive_indices

    Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.

  5. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    In a dispersive prism, material dispersion (a wavelength-dependent refractive index) causes different colors to refract at different angles, splitting white light into a spectrum. A compact fluorescent lamp seen through an Amici prism. Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1]

  6. Snell's law - Wikipedia

    en.wikipedia.org/wiki/Snell's_law

    Refraction of light at the interface between two media of different refractive indices, with n 2 > n 1.Since the velocity is lower in the second medium (v 2 < v 1), the angle of refraction θ 2 is less than the angle of incidence θ 1; that is, the ray in the higher-index medium is closer to the normal.

  7. Cauchy's equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_equation

    where n is the refractive index, λ is the wavelength, A, B, C, etc., are coefficients that can be determined for a material by fitting the equation to measured refractive indices at known wavelengths. The coefficients are usually quoted for λ as the vacuum wavelength in micrometres. Usually, it is sufficient to use a two-term form of the ...

  8. Brewster's angle - Wikipedia

    en.wikipedia.org/wiki/Brewster's_angle

    For a glass medium (n 2 ≈ 1.5) in air (n 1 ≈ 1), Brewster's angle for visible light is approximately 56°, while for an air-water interface (n 2 ≈ 1.33), it is approximately 53°. Since the refractive index for a given medium changes depending on the wavelength of light, Brewster's angle will also vary with wavelength.

  9. Refractometry - Wikipedia

    en.wikipedia.org/wiki/Refractometry

    A reference wavelength of 589.3 nm (the sodium D line) is most often used. Though RI is a dimensionless quantity, it is typically reported as nD20 (or n 20 D ), where the "n" represents refractive index, the "D" denotes the wavelength, and the 20 denotes the reference temperature. Therefore, the refractive index of water at 20 degrees Celsius ...