Search results
Results from the WOW.Com Content Network
This leads to the equivalent characterization: a matrix Q is orthogonal if its transpose is equal to its inverse: =, where Q −1 is the inverse of Q. An orthogonal matrix Q is necessarily invertible (with inverse Q −1 = Q T), unitary (Q −1 = Q ∗), where Q ∗ is the Hermitian adjoint (conjugate transpose) of Q, and therefore normal (Q ...
Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...
Equivalently, it is the group of n × n orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose). The orthogonal group is an algebraic group and a Lie group. It is compact. The orthogonal group in dimension n has two connected components.
The most external matrix rotates the other two, leaving the second rotation matrix over the line of nodes, and the third one in a frame comoving with the body. There are 3 × 3 × 3 = 27 possible combinations of three basic rotations but only 3 × 2 × 2 = 12 of them can be used for representing arbitrary 3D rotations as Euler angles.
Nilpotent matrix: A square matrix satisfying A q = 0 for some positive integer q. Equivalently, the only eigenvalue of A is 0. Normal matrix: A square matrix that commutes with its conjugate transpose: AA ∗ = A ∗ A: They are the matrices to which the spectral theorem applies. Orthogonal matrix: A matrix whose inverse is equal to its ...
A matrix will preserve or reverse orientation according to whether the determinant of the matrix is positive or negative. For an orthogonal matrix R, note that det R T = det R implies (det R) 2 = 1, so that det R = ±1. The subgroup of orthogonal matrices with determinant +1 is called the special orthogonal group, denoted SO(3).
where R 1 is an n×n upper triangular matrix, 0 is an (m − n)×n zero matrix, Q 1 is m×n, Q 2 is m×(m − n), and Q 1 and Q 2 both have orthogonal columns. Golub & Van Loan (1996, §5.2) call Q 1 R 1 the thin QR factorization of A; Trefethen and Bau call this the reduced QR factorization. [1]
One can always write = where V is a real orthogonal matrix, is the transpose of V, and S is a block upper triangular matrix called the real Schur form. The blocks on the diagonal of S are of size 1×1 (in which case they represent real eigenvalues) or 2×2 (in which case they are derived from complex conjugate eigenvalue pairs).