Search results
Results from the WOW.Com Content Network
Watson and Crick used many aluminium templates like this one, which is the single base Adenine (A), to build a physical model of DNA in 1953. When Watson and Crick produced their double helix model of DNA, it was known that most of the specialized features of the many different life forms on Earth are made possible by proteins .
Watson recognized the pattern as a helix because his co-worker Francis Crick had previously published a paper of what the diffraction pattern of a helix would be. [12] Watson and Crick used characteristics and features of Photo 51, together with evidence from multiple other sources, to develop the chemical model of the DNA molecule. Their model ...
The first reports of a double helix molecular model of B-DNA structure were made by James Watson and Francis Crick in 1953. [5] [6] That same year, Maurice F. Wilkins, A. Stokes and H.R. Wilson, reported the first X-ray patterns of in vivo B-DNA in partially oriented salmon sperm heads. [7]
The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...
Watson and Crick (who later won the Nobel Prize for their double-helix model) originally considered a triple-helix model, as did Pauling and Corey, who published a proposal for their triple-helix model in 1953, [47] [48] as well as fellow scientist Fraser. [49] However, Watson and Crick soon identified several problems with these models:
Watson and Crick published their proposed DNA double helical structure in a paper in the journal Nature in April 1953. In this paper Watson and Crick acknowledged that they had been "stimulated by.... the unpublished results and ideas" of Wilkins and Franklin. [36] The first Watson-Crick paper appeared in Nature on 25 April 1953.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Chemical structures for Watson–Crick and Hoogsteen A•T and G•C+ base pairs. The Hoogsteen geometry can be achieved by purine rotation around the glycosidic bond (χ) and base-flipping (θ), affecting simultaneously C8 and C1 ′ (yellow). [1] A Hoogsteen base pair is a variation of base-pairing in nucleic acids such as the A•T pair.