enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cutting-plane method - Wikipedia

    en.wikipedia.org/wiki/Cutting-plane_method

    The use of cutting planes to solve MILP was introduced by Ralph E. Gomory. Cutting plane methods for MILP work by solving a non-integer linear program, the linear relaxation of the given integer program. The theory of Linear Programming dictates that under mild assumptions (if the linear program has an optimal solution, and if the feasible ...

  3. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    The simplex algorithm and its variants fall in the family of edge-following algorithms, so named because they solve linear programming problems by moving from vertex to vertex along edges of a polytope. This means that their theoretical performance is limited by the maximum number of edges between any two vertices on the LP polytope.

  4. Penalty method - Wikipedia

    en.wikipedia.org/wiki/Penalty_method

    The advantage of the penalty method is that, once we have a penalized objective with no constraints, we can use any unconstrained optimization method to solve it. The disadvantage is that, as the penalty coefficient p grows, the unconstrained problem becomes ill-conditioned - the coefficients are very large, and this may cause numeric errors ...

  5. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    [41] [42] There are polynomial-time algorithms for linear programming that use interior point methods: these include Khachiyan's ellipsoidal algorithm, Karmarkar's projective algorithm, and path-following algorithms. [15] The Big-M method is an alternative strategy for solving a linear program, using a single-phase simplex.

  6. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    Some of the local methods assume that the graph admits a perfect matching; if this is not the case, then some of these methods might run forever. [1]: 3 A simple technical way to solve this problem is to extend the input graph to a complete bipartite graph, by adding artificial edges with very large weights. These weights should exceed the ...

  7. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    The duality theorem states that the duality gap between the two LP problems is at least zero. Economically, it means that if the first factory is given an offer to buy its entire stock of raw material, at a per-item price of y, such that A T y ≥ c, y ≥ 0, then it should take the offer. It will make at least as much revenue as it could ...

  8. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    Solve the problem using the usual simplex method. For example, x + y ≤ 100 becomes x + y + s 1 = 100, whilst x + y ≥ 100 becomes x + y − s 1 + a 1 = 100. The artificial variables must be shown to be 0. The function to be maximised is rewritten to include the sum of all the artificial variables.

  9. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    Since the number of BFS-s is finite and bounded by (), an optimal solution to any LP can be found in finite time by just evaluating the objective function in all () BFS-s. This is not the most efficient way to solve an LP; the simplex algorithm examines the BFS-s in a much more efficient way.