Search results
Results from the WOW.Com Content Network
Approximating a fraction by a fractional decimal number: 5 / 3 1.6667: 4 decimal places: Approximating a fractional decimal number by one with fewer digits 2.1784: 2.18 2 decimal places Approximating a decimal integer by an integer with more trailing zeros 23217: 23200: 3 significant figures Approximating a large decimal integer using ...
This is described in a SIGGRAPH 2000 paper [6] (see section 4.3) and further documented in US patent 7518615. [7] It was popularized by its use in the open-source OpenEXR image format. Nvidia and Microsoft defined the half datatype in the Cg language, released in early 2002, and implemented it in silicon in the GeForce FX, released in late 2002 ...
Integers between 2 53 and 2 54 = 18,014,398,509,481,984 round to a multiple of 2 (even number). Integers between 2 54 and 2 55 = 36,028,797,018,963,968 round to a multiple of 4. Integers between 2 n and 2 n+1 round to a multiple of 2 n−52.
Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 2 −2, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two , e.g. 1 / 8 = 1 / 2 3 .
Here the 'IEEE 754 double value' resulting of the 15 bit figure is 3.330560653658221E-15, which is rounded by Excel for the 'user interface' to 15 digits 3.33056065365822E-15, and then displayed with 30 decimals digits gets one 'fake zero' added, thus the 'binary' and 'decimal' values in the sample are identical only in display, the values ...
Integers between 2 24 =16777216 and 2 25 =33554432 round to a multiple of 2 (even number) Integers between 2 25 and 2 26 round to a multiple of 4... Integers between 2 n and 2 n+1 round to a multiple of 2 n-23... Integers between 2 127 and 2 128 round to a multiple of 2 104; Integers greater than or equal to 2 128 are rounded to "infinity".
The leading digit is between 0 and 9 (3 or 4 binary bits), and the rest of the significand uses the densely packed decimal (DPD) encoding. The leading 2 bits of the exponent and the leading digit (3 or 4 bits) of the significand are combined into the five bits that follow the sign bit. This is followed by a fixed-offset exponent continuation field.
In decimal notation, a number ending in the digit "5" is also considered more round than one ending in another non-zero digit (but less round than any which ends with "0"). [2] [3] For example, the number 25 tends to be seen as more round than 24. Thus someone might say, upon turning 45, that their age is more round than when they turn 44 or 46 ...