Search results
Results from the WOW.Com Content Network
In experimental psychology, the RMSD is used to assess how well mathematical or computational models of behavior explain the empirically observed behavior. In GIS, the RMSD is one measure used to assess the accuracy of spatial analysis and remote sensing. In hydrogeology, RMSD and NRMSD are used to evaluate the calibration of a groundwater ...
Note that, for the case of ligands (contrary to proteins, as described above), their structures are most commonly not superimposed prior to the calculation of the RMSD. RMSD is also one of several metrics that have been proposed for quantifying evolutionary similarity between proteins, as well as the quality of sequence alignments.
Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:
The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).
In the physics of gas molecules, the root-mean-square speed is defined as the square root of the average squared-speed. The RMS speed of an ideal gas is calculated using the following equation: v RMS = 3 R T M {\displaystyle v_{\text{RMS}}={\sqrt {3RT \over M}}}
The data set [90, 100, 110] has more variability. Its standard deviation is 10 and its average is 100, giving the coefficient of variation as 10 / 100 = 0.1; The data set [1, 5, 6, 8, 10, 40, 65, 88] has still more variability. Its standard deviation is 32.9 and its average is 27.9, giving a coefficient of variation of 32.9 / 27.9 = 1.18
A molecular dynamics simulation requires the definition of a potential function, or a description of the terms by which the particles in the simulation will interact. In chemistry and biology this is usually referred to as a force field and in materials physics as an interatomic potential.
Examples of correlation between RCI and other methods of measuring motional amplitudes in proteins. NMR RMSD - root mean square fluctuations of atomic coordinates in NMR ensembles, MD RMSD - root mean square fluctuations of atomic coordinates in MD ensembles, S2 - model-free order parameter, RCI - random coil index, B-factor - temperature factor of X-ray structures; RCI->NMR RMSD - root mean ...