enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    The fact that the triple-angle formula for sine and cosine only involves powers of a single function allows one to relate the geometric problem of a compass and straightedge construction of angle trisection to the algebraic problem of solving a cubic equation, which allows one to prove that trisection is in general impossible using the given tools.

  3. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides.

  4. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_trigonometric...

    The following table shows how inverse trigonometric functions may be used to solve equalities involving the six standard trigonometric functions. It is assumed that the given values θ , {\displaystyle \theta ,} r , {\displaystyle r,} s , {\displaystyle s,} x , {\displaystyle x,} and y {\displaystyle y} all lie within appropriate ranges so that ...

  5. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    It follows that the solutions of such an equation are exactly the zeros of the function . In other words, a "zero of a function" is precisely a "solution of the equation obtained by equating the function to 0", and the study of zeros of functions is exactly the same as the study of solutions of equations.

  6. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Solving an equation f(x) = g(x) is the same as finding the roots of the function h(x) = f(x) – g(x). Thus root-finding algorithms can be used to solve any equation of continuous functions. However, most root-finding algorithms do not guarantee that they will find all roots of a function, and if such an algorithm does not find any root, that ...

  7. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    In mathematics, Euler's identity [note 1] (also known as Euler's equation) is the equality + = where e {\displaystyle e} is Euler's number , the base of natural logarithms , i {\displaystyle i} is the imaginary unit , which by definition satisfies i 2 = − 1 {\displaystyle i^{2}=-1} , and

  8. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    For a small angle, H and A are almost the same length, and therefore cos θ is nearly 1. The segment d (in red to the right) is the difference between the lengths of the hypotenuse, H, and the adjacent side, A, and has length , which for small angles is approximately equal to /.

  9. atan2 - Wikipedia

    en.wikipedia.org/wiki/Atan2

    atan2(y, x) returns the angle θ between the positive x-axis and the ray from the origin to the point (x, y), confined to (−π, π].Graph of ⁡ (,) over /. In computing and mathematics, the function atan2 is the 2-argument arctangent.