enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Diophantine equation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_equation

    This is a linear Diophantine equation, related to Bézout's identity. + = + The smallest nontrivial solution in positive integers is 12 3 + 1 3 = 9 3 + 10 3 = 1729.It was famously given as an evident property of 1729, a taxicab number (also named Hardy–Ramanujan number) by Ramanujan to Hardy while meeting in 1917. [1]

  3. Archimedes's cattle problem - Wikipedia

    en.wikipedia.org/wiki/Archimedes's_cattle_problem

    Archimedes's cattle problem (or the problema bovinum or problema Archimedis) is a problem in Diophantine analysis, the study of polynomial equations with integer solutions. Attributed to Archimedes, the problem involves computing the number of cattle in a herd of the sun god from a given set of restrictions.

  4. Coin problem - Wikipedia

    en.wikipedia.org/wiki/Coin_problem

    For example, if you had two types of coins valued at 6 cents and 14 cents, the GCD would equal 2, and there would be no way to combine any number of such coins to produce a sum which was an odd number; additionally, even numbers 2, 4, 8, 10, 16 and 22 (less than m=24) could not be formed, either.

  5. 6 - Wikipedia

    en.wikipedia.org/wiki/6

    6 is the 2nd superior highly composite number, [5] the 2nd colossally abundant number, [6] the 3rd triangular number, [7] the 4th highly composite number, [8] a pronic number, [9] a congruent number, [10] a harmonic divisor number, [11] and a semiprime. [12] 6 is also the first Granville number, or -perfect number. A Golomb ruler of length 6 is ...

  6. Change-making problem - Wikipedia

    en.wikipedia.org/wiki/Change-making_problem

    Coin values can be modeled by a set of n distinct positive integer values (whole numbers), arranged in increasing order as w 1 through w n.The problem is: given an amount W, also a positive integer, to find a set of non-negative (positive or zero) integers {x 1, x 2, ..., x n}, with each x j representing how often the coin with value w j is used, which minimize the total number of coins f(W)

  7. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or complex coefficients has a solution which is a complex number.

  8. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    This equation can be viewed as a Diophantine equation, that is, an equation for which only integer solutions are sought. In this case, the solution set is the empty set, since 2 is not the square of an integer. However, if one searches for real solutions, there are two solutions, √ 2 and – √ 2; in other words, the solution set is {√ 2 ...

  9. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    A modular multiplicative inverse of an integer a with respect to the modulus m is a solution of the linear congruence a x ≡ 1 ( mod m ) . {\displaystyle ax\equiv 1{\pmod {m}}.} The previous result says that a solution exists if and only if gcd( a , m ) = 1 , that is, a and m must be relatively prime (i.e. coprime).