Search results
Results from the WOW.Com Content Network
[13] [14] [15] Combining Slipher's velocities with Henrietta Swan Leavitt's intergalactic distance calculations and methodology allowed Hubble to better calculate an expansion rate for the universe. [16] Hubble's law is considered the first observational basis for the expansion of the universe, and is one of the pieces of evidence most often ...
A higher expansion rate would imply a smaller characteristic size of CMB fluctuations, and vice versa. The Planck collaboration measured the expansion rate this way and determined H 0 = 67.4 ± 0.5 (km/s)/Mpc. [26] There is a disagreement between this measurement and the supernova-based measurements, known as the Hubble tension.
The accelerated expansion of the universe is thought to have begun since the universe entered its dark-energy-dominated era roughly 5 billion years ago. [ 8 ] [ notes 1 ] Within the framework of general relativity , an accelerated expansion can be accounted for by a positive value of the cosmological constant Λ , equivalent to the presence of ...
The universe's expansion rate, a figure called the Hubble constant, is measured in kilometers per second per megaparsec, a distance equal to 3.26 million light-years.
The expansion of the universe is parameterized by a dimensionless scale factor = (with time counted from the birth of the universe), defined relative to the present time, so = =; the usual convention in cosmology is that subscript 0 denotes present-day values, so denotes the age of the universe.
The second equation states that both the energy density and the pressure cause the expansion rate of the universe ˙ to decrease, i.e., both cause a deceleration in the expansion of the universe. This is a consequence of gravitation , with pressure playing a similar role to that of energy (or mass) density, according to the principles of ...
Here is the Hubble parameter, a measure of the rate at which the universe is expanding. ρ {\displaystyle \rho } is the total density of mass and energy in the universe, a {\displaystyle a} is the scale factor (essentially the 'size' of the universe), and k {\displaystyle k} is the curvature parameter — that is, a measure of how curved ...
The Hubble law's linear relationship between distance and redshift assumes that the rate of expansion of the universe is constant. However, when the universe was much younger, the expansion rate, and thus the Hubble "constant", was larger than it is today.