Search results
Results from the WOW.Com Content Network
An f-test pdf with d1 and d2 = 10, at a significance level of 0.05. (Red shaded region indicates the critical region) An F-test is a statistical test that compares variances. It's used to determine if the variances of two samples, or if the ratios of variances among multiple samples, are significantly different.
In probability theory and statistics, the F-distribution or F-ratio, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor), is a continuous probability distribution that arises frequently as the null distribution of a test statistic, most notably in the analysis of variance (ANOVA) and other F-tests.
The F-test in ANOVA is an example of an omnibus test, which tests the overall significance of the model. A significant F test means that among the tested means, at least two of the means are significantly different, but this result doesn't specify exactly which means are different one from the other.
The fixation index (F ST) is a measure of population differentiation due to genetic structure. It is frequently estimated from genetic polymorphism data, such as single-nucleotide polymorphisms (SNP) or microsatellites. Developed as a special case of Wright's F-statistics, it is one of the most commonly used statistics in population genetics ...
In statistics, an F-test of equality of variances is a test for the null hypothesis that two normal populations have the same variance.Notionally, any F-test can be regarded as a comparison of two variances, but the specific case being discussed in this article is that of two populations, where the test statistic used is the ratio of two sample variances. [1]
The test statistic is approximately F-distributed with and degrees of freedom, and hence is the significance of the outcome of tested against (;,) where is a quantile of the F-distribution, with and degrees of freedom, and is the chosen level of significance (usually 0.05 or 0.01).
For example, Tukey's range test and Duncan's new multiple range test (MRT), in which the sample x 1, ..., x n is a sample of means and q is the basic test-statistic, can be used as post-hoc analysis to test between which two groups means there is a significant difference (pairwise comparisons) after rejecting the null hypothesis that all groups ...
The Šidák correction is derived by assuming that the individual tests are independent.Let the significance threshold for each test be ; then the probability that at least one of the tests is significant under this threshold is (1 - the probability that none of them are significant).