Search results
Results from the WOW.Com Content Network
In mathematics, the Markov brothers' inequality is an inequality, proved in the 1890s by brothers Andrey Markov and Vladimir Markov, two Russian mathematicians. This inequality bounds the maximum of the derivatives of a polynomial on an interval in terms of the maximum of the polynomial. [ 1 ]
More precisely Markov's theorem can be stated as follows: [2] [3] given two braids represented by elements , ′ in the braid groups ,, their closures are equivalent links if and only if ′ can be obtained from applying to a sequence of the following operations:
In probability theory, Markov's inequality gives an upper bound on the probability that a non-negative random variable is greater than or equal to some positive constant. Markov's inequality is tight in the sense that for each chosen positive constant, there exists a random variable such that the inequality is in fact an equality.
The theorem was named after Carl Friedrich Gauss and Andrey Markov, although Gauss' work significantly predates Markov's. [3] But while Gauss derived the result under the assumption of independence and normality, Markov reduced the assumptions to the form stated above. [4] A further generalization to non-spherical errors was given by Alexander ...
In mathematics, specifically in the theory of Markovian stochastic processes in probability theory, the Chapman–Kolmogorov equation (CKE) is an identity relating the joint probability distributions of different sets of coordinates on a stochastic process.
The Markov-modulated Poisson process or MMPP where m Poisson processes are switched between by an underlying continuous-time Markov chain. [8] If each of the m Poisson processes has rate λ i and the modulating continuous-time Markov has m × m transition rate matrix R , then the MAP representation is
Price on eBay: $8,500 Porcelain dolls don’t have to be more than 2 feet tall to be worth a lot of money. This little lady stands only 15 1/2 inches tall, but her ornate details and impressive ...
Every adapted right continuous Feller process on a filtered probability space (,, ()) satisfies the strong Markov property with respect to the filtration (+), i.e., for each (+)-stopping time, conditioned on the event {<}, we have that for each , + is independent of + given .