Search results
Results from the WOW.Com Content Network
A signal of continuous amplitude and time is known as a continuous-time signal or an analog signal. This (a signal ) will have some value at every instant of time. The electrical signals derived in proportion with the physical quantities such as temperature, pressure, sound etc. are generally continuous signals.
Signal sampling representation. The continuous signal S(t) is represented with a green colored line while the discrete samples are indicated by the blue vertical lines. In signal processing, sampling is the reduction of a continuous-time signal to a discrete-time signal. A common example is the conversion of a sound wave to a sequence of "samples".
This technology mainly discusses the modeling of a linear time-invariant continuous system, integral of the system's zero-state response, setting up system function and the continuous time filtering of deterministic signals. For example, in time domain, a continuous-time signal () passing through a linear time-invariant filter/system denoted as ...
The Nyquist–Shannon sampling theorem is a theorem in the field of signal processing which serves as a fundamental bridge between continuous-time signals and discrete-time signals. It establishes a sufficient condition for a sample rate that permits a discrete sequence of samples to capture all the information from a continuous-time signal of ...
The zero-order hold (ZOH) is a mathematical model of the practical signal reconstruction done by a conventional digital-to-analog converter (DAC). [1] That is, it describes the effect of converting a discrete-time signal to a continuous-time signal by holding each sample value for one sample interval. It has several applications in electrical ...
Note that the Nyquist rate is a property of a continuous-time signal, whereas Nyquist frequency is a property of a discrete-time system. The term Nyquist rate is also used in a different context with units of symbols per second, which is actually the field in which Harry Nyquist was working.
Similarly, the spectral energy density of signal x(t) is = | | where X(f) is the Fourier transform of x(t).. For example, if x(t) represents the magnitude of the electric field component (in volts per meter) of an optical signal propagating through free space, then the dimensions of X(f) would become volt·seconds per meter and () would represent the signal's spectral energy density (in volts ...
Time domain refers to the analysis of mathematical functions, physical signals or time series of economic or environmental data, with respect to time. In the time domain, the signal or function's value is known for all real numbers, for the case of continuous time, or at various separate instants in the case of discrete time. An oscilloscope is ...