Search results
Results from the WOW.Com Content Network
An electrical injury (electric injury) or electrical shock (electric shock) is damage sustained to the skin or internal organs on direct contact with an electric current. [ 2 ] [ 3 ] The injury depends on the density of the current , tissue resistance and duration of contact. [ 4 ]
Three elements are required for an electrocution to occur: (a) a charged electrical source, (b) a current pathway through the victim, (c) a ground. The health hazard of an electric current flowing through the body depends on the amount of current and the length of time for which it flows, not merely on the voltage. However, a high voltage is ...
An electrode introduced into the brain of a living animal will detect electrical activity that is generated by the neurons adjacent to the electrode tip. If the electrode is a microelectrode, with a tip size of about 1 micrometre, the electrode will usually detect the activity of at most one neuron.
The vertical axis represents the current intensity in milliamp (mA), while the horizontal axis illustrates the time-course. In transcranial magnetic stimulation (TMS), an electric coil is held above the region of interest on the scalp that uses rapidly changing magnetic fields to induce small electrical currents in the brain. There are two ...
The brain cannot survive long without oxygen, and the continued lack of oxygen in the blood, combined with the cardiac arrest, will lead to the deterioration of brain cells, causing first brain damage and eventually brain death after six minutes from which recovery is generally considered impossible. Hypothermia of the central nervous system ...
Damage of the lungs reduces the surface for oxygen uptake from the air, reducing the amount of the oxygen delivered to the brain. Tissue destruction initiates the synthesis and release of hormones or mediators into the blood which, when delivered to the brain, change its function.
Studies have been performed on the use of shortwave radiation for cancer therapy and promoting wound healing, with some success. However, at a sufficiently high energy level, shortwave energy can be harmful to human health, potentially causing damage to biological tissues, for example by overheating or inducing electrical currents. [28]
Developmental bioelectricity is a sub-discipline of biology, related to, but distinct from, neurophysiology and bioelectromagnetics.Developmental bioelectricity refers to the endogenous ion fluxes, transmembrane and transepithelial voltage gradients, and electric currents and fields produced and sustained in living cells and tissues.