Search results
Results from the WOW.Com Content Network
It is called supercritical fluid. The common textbook knowledge that all distinction between liquid and vapor disappears beyond the critical point has been challenged by Fisher and Widom, [8] who identified a p–T line that separates states with different asymptotic statistical properties (Fisher–Widom line).
A transcritical cycle is a closed thermodynamic cycle where the working fluid goes through both subcritical and supercritical states. In particular, for power cycles the working fluid is kept in the liquid region during the compression phase and in vapour and/or supercritical conditions during the expansion phase.
By changing the pressure and temperature of the fluid, the properties can be "tuned" to be more liquid-like or more gas-like. One of the most important properties is the solubility of material in the fluid. Solubility in a supercritical fluid tends to increase with density of the fluid (at constant temperature).
Carbon dioxide pressure-temperature phase diagram This video shows the property of carbon dioxide to go into a supercritical state with increasing temperature. Supercritical carbon dioxide (s CO 2) is a fluid state of carbon dioxide where it is held at or above its critical temperature and critical pressure.
Hydraulic jump in a rectangular channel, also known as classical jump, is a natural phenomenon that occurs whenever flow changes from supercritical to subcritical flow. In this transition, the water surface rises abruptly, surface rollers are formed, intense mixing occurs, air is entrained, and often a large amount of energy is dissipated.
Note the location of critical flow, subcritical flow, and supercritical flow. The energy equation used for open channel flow computations is a simplification of the Bernoulli Equation (See Bernoulli Principle), which takes into account pressure head, elevation head, and velocity head. (Note, energy and head are synonymous in Fluid Dynamics.
The critical point is 21.7 MPa at a temperature of 374 °C, above which water is supercritical rather than superheated. Above about 300 °C, water starts to behave as a near-critical liquid, and physical properties such as density start to change more significantly with pressure.
[7] [8] [9] Because of inertial effects, the fluid will prefer to the straight direction. Thus the flow rate of the straight pipe is greater than that of the vertical one. Furthermore, because the lower energy fluid in the boundary layer branches through the channels the higher energy fluid in the pipe centre remains in the pipe as shown in Fig. 4.