Search results
Results from the WOW.Com Content Network
This polarization is the displacement current as it was originally conceived by Maxwell. Maxwell made no special treatment of the vacuum, treating it as a material medium. For Maxwell, the effect of P was simply to change the relative permittivity ε r in the relation D = ε 0 ε r E. The modern justification of displacement current is ...
The formula provides a natural generalization of the Coulomb's law for cases where the source charge is moving: = [′ ′ + ′ (′ ′) + ′] = ′ Here, and are the electric and magnetic fields respectively, is the electric charge, is the vacuum permittivity (electric field constant) and is the speed of light.
In the electric and magnetic field formulation there are four equations that determine the fields for given charge and current distribution. A separate law of nature, the Lorentz force law, describes how the electric and magnetic fields act on charged particles and currents. By convention, a version of this law in the original equations by ...
where current density J D is the displacement current, and J is the current density contribution actually due to movement of charges, both free and bound. Because ∇ ⋅ D = ρ , the charge continuity issue with Ampère's original formulation is no longer a problem. [ 22 ]
where ρ is the charge density, which can (and often does) depend on time and position, ε 0 is the electric constant, μ 0 is the magnetic constant, and J is the current per unit area, also a function of time and position. The equations take this form with the International System of Quantities.
Permittivity as a function of frequency can take on real or complex values. In SI units, permittivity is measured in farads per meter (F/m or A 2 ·s 4 ·kg −1 ·m −3). The displacement field D is measured in units of coulombs per square meter (C/m 2), while the electric field E is measured in volts per meter (V/m).
Gauss's law makes it possible to find the distribution of electric charge: The charge in any given region of the conductor can be deduced by integrating the electric field to find the flux through a small box whose sides are perpendicular to the conductor's surface and by noting that the electric field is perpendicular to the surface, and zero ...
The neutral current can be determined by adding the three phase currents together as complex numbers and then converting from rectangular to polar co-ordinates. If the three-phase root mean square (RMS) currents are I L 1 {\displaystyle I_{L1}} , I L 2 {\displaystyle I_{L2}} , and I L 3 {\displaystyle I_{L3}} , the neutral RMS current is: