Search results
Results from the WOW.Com Content Network
For example, 4% electrical steel has an initial relative permeability (at or near 0 T) of 2,000 and a maximum of 38,000 at T = 1 [5] [6] and different range of values at different percent of Si and manufacturing process, and, indeed, the relative permeability of any material at a sufficiently high field strength trends toward 1 (at magnetic ...
where μ 0 is the vacuum permeability (see table of physical constants), and (1 + χ v) is the relative permeability of the material. Thus the volume magnetic susceptibility χ v and the magnetic permeability μ are related by the following formula: = (+).
It is a measure of material permeability variation after demagnetization, given by a formula = (), where , are permeability values, and t 1, t 2 are time from demagnetization; usually determined for t 1 = 10 min, t 2 = 100 min; range from 2×10 −6 to 12×10 −6 for typical MnZn and NiZn ferrites;
The permeability of ferromagnetic materials is not constant, but depends on H. In saturable materials the relative permeability increases with H to a maximum, then as it approaches saturation inverts and decreases toward one. [2] [3] Different materials have different saturation levels.
Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagnetic materials are noticeably attracted to a magnet, which is a consequence of their substantial ...
The typical relative permeability (μ r) of electrical steel is 4,000-38,000 times that of vacuum, compared to 1.003-1800 for stainless steel. [ 15 ] [ 16 ] [ 17 ] The magnetic properties of electrical steel are dependent on heat treatment , as increasing the average crystal size decreases the hysteresis loss.
and permeability is defined as above in § Speed of electromagnetic waves in good dielectrics = the permeability of free space = 4π x 10 −7 H/m. = relative magnetic permeability of the material. Nonmagnetic conductive materials such as copper typically have a near 1.
A magnetic alloy is a combination of various metals from the periodic table such as ferrite that exhibits magnetic properties such as ferromagnetism. Typically the alloy contains one of the three main magnetic elements (which appear on the Bethe-Slater curve ): iron (Fe) , nickel (Ni) , or cobalt (Co) .