Search results
Results from the WOW.Com Content Network
Applying the transmission line model based on the telegrapher's equations as derived below, [1] [2] the general expression for the characteristic impedance of a transmission line is: = + + where R {\displaystyle R} is the resistance per unit length, considering the two conductors to be in series ,
Equivalent circuit of an unbalanced transmission line (such as coaxial cable) where: 2/Z o is the trans-admittance of VCCS (Voltage Controlled Current Source), x is the length of transmission line, Z(s) ≡ Z o (s) is the characteristic impedance, T(s) is the propagation function, γ(s) is the propagation "constant", s ≡ j ω, and j 2 ≡ −1.
Impedance (Z) parameter may defines by applying a fixed current into one port (I1) of a transmission line with the other port open and measuring the resulting voltage on each port (V1, V2) [8] [9] and computing the impedance parameter Z11 is V1/I1, and the impedance parameter Z12 is V2/I1. Since transmission lines are electrically passive and ...
The characteristic impedance or surge impedance (usually written Z 0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a single wave propagating along the line; that is, a wave travelling in one direction in the absence of reflections in the other direction. Alternatively and equivalently it can be defined ...
A time-domain reflectometer; an instrument used to locate the position of faults on lines from the time taken for a reflected wave to return from the discontinuity.. A signal travelling along an electrical transmission line will be partly, or wholly, reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impedance of the line, or if ...
Fig.1 Transmission line. The distributed-element model applied to a transmission line. In electrical engineering, the distributed-element model or transmission-line model of electrical circuits assumes that the attributes of the circuit (resistance, capacitance, and inductance) are distributed continuously throughout the material of the circuit.
The three electrode systems such as transistors require more complicated methods for the contact resistance approximation. The most common approach is the transmission line model (TLM). Here, the total device resistance is plotted as a function of the channel length:
This pulse will be partially reflected and transmitted according to the transmission-line theory. If we assume that each line has a characteristic impedance , then the incident pulse sees effectively three transmission lines in parallel with a total impedance of /. The reflection coefficient and the transmission coefficient are given by