Search results
Results from the WOW.Com Content Network
A triglyceride (from tri-and glyceride; also TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids. [1] Triglycerides are the main constituents of body fat in humans and other vertebrates as well as vegetable fat . [ 2 ]
[21] [22] They are made of a hydrocarbon chain that terminates with a carboxylic acid group; this arrangement confers the molecule with a polar, hydrophilic end, and a nonpolar, hydrophobic end that is insoluble in water. The fatty acid structure is one of the most fundamental categories of biological lipids and is commonly used as a building ...
It is made up of a mixture of amylose (15–20%) and amylopectin (80–85%). Amylose consists of a linear chain of several hundred glucose molecules, and Amylopectin is a branched molecule made of several thousand glucose units (every chain of 24–30 glucose units is one unit of Amylopectin). Starches are insoluble in water.
The molecule of a triglyceride can be described as resulting from a condensation reaction (specifically, esterification) between each of glycerol's –OH groups and the HO– part of the carboxyl group HO(O=)C− of each fatty acid, forming an ester bridge −O−(O=)C− with elimination of a water molecule H
Glycerol Triacetin, the simplest possible fat (triglyceride) after triformin. Glycerides, also known as acylglycerols, are esters formed from glycerol and fatty acids, and are generally very hydrophobic. [1] Glycerol has three hydroxyl functional groups, which can be esterified with one, two, or three fatty acids to form mono-, di-, and ...
Triglycerides are formed from the esterification of 3 molecules of fatty acids with one molecule of trihydric alcohol, glycerol (glycerine or trihydroxy propane). In the process, 3 molecules of water are eliminated. The word "triglyceride" refers to the number of fatty acids esterified to one molecule of glycerol.
Glycogen is a branched biopolymer consisting of linear chains of glucose residues with an average chain length of approximately 8–12 glucose units and 2,000-60,000 residues per one molecule of glycogen. [20] [21] Like amylopectin, glucose units are linked together linearly by α(1→4) glycosidic bonds from one glucose to the next. Branches ...
Polysaccharides (sugar polymers) can be linear or branched and are typically joined with glycosidic bonds. The exact placement of the linkage can vary, and the orientation of the linking functional groups is also important, resulting in α- and β-glycosidic bonds with numbering definitive of the linking carbons' location in the ring.