enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...

  3. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    In machine learning, normalization is a statistical technique with various applications. There are two main forms of normalization, namely data normalization and activation normalization . Data normalization (or feature scaling ) includes methods that rescale input data so that the features have the same range, mean, variance, or other ...

  4. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    This includes, for example, early stopping, using a robust loss function, and discarding outliers. Implicit regularization is essentially ubiquitous in modern machine learning approaches, including stochastic gradient descent for training deep neural networks, and ensemble methods (such as random forests and gradient boosted trees).

  5. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    In the field of statistical learning theory, matrix regularization generalizes notions of vector regularization to cases where the object to be learned is a matrix. The purpose of regularization is to enforce conditions, for example sparsity or smoothness, that can produce stable predictive functions.

  6. Elastic net regularization - Wikipedia

    en.wikipedia.org/wiki/Elastic_net_regularization

    It was proven in 2014 that the elastic net can be reduced to the linear support vector machine. [7] A similar reduction was previously proven for the LASSO in 2014. [8] The authors showed that for every instance of the elastic net, an artificial binary classification problem can be constructed such that the hyper-plane solution of a linear support vector machine (SVM) is identical to the ...

  7. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    Regularized least squares (RLS) is a family of methods for solving the least-squares problem while using regularization to further constrain the resulting solution.. RLS is used for two main reasons.

  8. Histogram of oriented gradients - Wikipedia

    en.wikipedia.org/wiki/Histogram_of_oriented...

    In their experiments, Dalal and Triggs found the L2-hys, L2-norm, and L1-sqrt schemes provide similar performance, while the L1-norm provides slightly less reliable performance; however, all four methods showed very significant improvement over the non-normalized data.

  9. Vowpal Wabbit - Wikipedia

    en.wikipedia.org/wiki/Vowpal_Wabbit

    Vowpal Wabbit's interactive learning support is particularly notable including Contextual Bandits, Active Learning, and forms of guided Reinforcement Learning. Vowpal Wabbit provides an efficient scalable out-of-core implementation with support for a number of machine learning reductions , importance weighting, and a selection of different loss ...