enow.com Web Search

  1. Ad

    related to: reverse power rule calculus explanation pdf

Search results

  1. Results from the WOW.Com Content Network
  2. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    In calculus, the power rule is used to differentiate functions of the form () =, whenever is a real number.Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule.

  3. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  4. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    These rules are given in many books, both on elementary and advanced calculus, in pure and applied mathematics. Those in this article (in addition to the above references) can be found in: Mathematical Handbook of Formulas and Tables (3rd edition) , S. Lipschutz, M.R. Spiegel, J. Liu, Schaum's Outline Series, 2009, ISBN 978-0-07-154855-7 .

  5. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  6. Antiderivative - Wikipedia

    en.wikipedia.org/wiki/Antiderivative

    The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.

  7. Integral of inverse functions - Wikipedia

    en.wikipedia.org/wiki/Integral_of_inverse_functions

    His second proof was geometric. If () = and () =, the theorem can be written: + =.The figure on the right is a proof without words of this formula. Laisant does not discuss the hypotheses necessary to make this proof rigorous, but this can be proved if is just assumed to be strictly monotone (but not necessarily continuous, let alone differentiable).

  8. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    In geometric calculus, the geometric derivative satisfies a weaker form of the Leibniz (product) rule. It specializes the Fréchet derivative to the objects of geometric algebra. Geometric calculus is a powerful formalism that has been shown to encompass the similar frameworks of differential forms and differential geometry. [1]

  9. Reciprocal rule - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_rule

    In calculus, the reciprocal rule gives the derivative of the reciprocal of a function f in terms of the derivative of f. The reciprocal rule can be used to show that the power rule holds for negative exponents if it has already been established for positive exponents.

  1. Ad

    related to: reverse power rule calculus explanation pdf