Search results
Results from the WOW.Com Content Network
In thermodynamics, the compressibility factor (Z), also known as the compression factor or the gas deviation factor, describes the deviation of a real gas from ideal gas behaviour. It is simply defined as the ratio of the molar volume of a gas to the molar volume of an ideal gas at the same temperature and pressure .
The compressibility factor is defined as = where p is the pressure of the gas, T is its temperature, and is its molar volume, all measured independently of one another. In the case of an ideal gas, the compressibility factor Z is equal to unity, and the familiar ideal gas law is recovered:
The virial expansion is a model of thermodynamic equations of state.It expresses the pressure P of a gas in local equilibrium as a power series of the density.This equation may be represented in terms of the compressibility factor, Z, as = + + + This equation was first proposed by Kamerlingh Onnes. [1]
These dimensionless thermodynamic coordinates, taken together with a substance's compressibility factor, provide the basis for the simplest form of the theorem of corresponding states. [1] Reduced properties are also used to define the Peng–Robinson equation of state, a model designed to provide reasonable accuracy near the critical point. [2]
The principle of corresponding states (CS principle or CSP) was first formulated by van der Waals, and it says that two fluids (subscript a and z) of a group (e.g. fluids of non-polar molecules) have approximately the same reduced molar volume (or reduced compressibility factor) when compared at the same reduced temperature and reduced pressure ...
The first step in obtaining a closed expression for virial coefficients is a cluster expansion [1] of the grand canonical partition function = = / Here is the pressure, is the volume of the vessel containing the particles, is the Boltzmann constant, is the absolute temperature, = [/ ()] is the fugacity, with the chemical potential.
Robert Boyle, after whom this Temperature is named. The Boyle temperature, named after Robert Boyle, is formally defined as the temperature for which the second virial coefficient, (), becomes zero.
It reads: = + [()] where is the number density, g(r) is the radial distribution function and () is the isothermal compressibility. Using the Fourier representation of the Ornstein-Zernike equation the compressibility equation can be rewritten in the form: