Search results
Results from the WOW.Com Content Network
Such reactions give alkenes in the case of vicinal alkyl dihalides: [2] R 2 C(X)C(X)R 2 + M → R 2 C=CR 2 + MX 2. Most desirable from the perspective of remediation are dehalogenations by hydrogenolysis, i.e. the replacement of a C−X bond by a C−H bond. Such reactions are amenable to catalysis: R−X + H 2 → R−H + HX
Traditionally, alkyl halides are substrates for dehydrohalogenations. The alkyl halide must be able to form an alkene, thus halides having no C–H bond on an adjacent carbon are not suitable substrates. Aryl halides are also unsuitable. Upon treatment with strong base, chlorobenzene dehydrohalogenates to give phenol via a benzyne intermediate.
The scope of the Corey-House synthesis is exceptionally broad, and a range of lithium diorganylcuprates (R 2 CuLi, R = 1°, 2°, or 3° alkyl, aryl, or alkenyl) and organyl (pseudo)halides (RX, R = methyl, benzylic, allylic, 1°, or cyclic 2° alkyl, aryl, or alkenyl and X = Br, I, OTs, or OTf; X = Cl is marginal) will undergo coupling as the nucleophilic and electrophilic coupling partners ...
The iodide anion is a good nucleophile and will displace chloride, tosylate, bromide and other leaving groups, as in the Finkelstein reaction. Alcohols can be converted to the corresponding iodides using phosphorus triiodide. Illustrative is the conversion of methanol to iodomethane: [15] PI 3 + 3 CH 3 OH → 3 CH 3 I + "H 3 PO 3 "
In the classic Finkelstein reaction, an alkyl chloride or an alkyl bromide is converted to an alkyl iodide by treatment with a solution of sodium iodide in acetone. Sodium iodide is soluble in acetone and sodium chloride and sodium bromide are not. [29] The reaction is driven toward products by mass action due to the precipitation of the ...
However, if an unreactive alkylating agent is used (e.g. an alkyl chloride) then the rate of reaction can be greatly improved by the addition of a catalytic quantity of a soluble iodide salt (which undergoes halide exchange with the chloride to yield a much more reactive iodide, a variant of the Finkelstein reaction).
Allyl iodide (3-iodopropene) is an organic halide used in synthesis of other organic compounds such as N-alkyl-2-pyrrolidones, [1] [failed verification] sorbic acid esters, [1] 5,5-disubstituted barbituric acids, [2] [failed verification] and organometallic catalysts.
Barbier reaction with samarium(II) iodide The Barbier reaction is an organometallic reaction between an alkyl halide (chloride, bromide, iodide), a carbonyl group and a metal. The reaction can be performed using magnesium , aluminium , zinc , indium , tin , samarium , barium or their salts.