Search results
Results from the WOW.Com Content Network
A bottle of iodine solution used on apples to determine the correct harvest time. The chart shows the level of residual starch. The cut surface of an apple stained with iodine, indicating a starch level of 4–5. The iodine–starch test is a chemical reaction that is used to test for the presence of starch or for iodine. The combination of ...
The iodine clock reaction exists in several variations, which each involve iodine species (iodide ion, free iodine, or iodate ion) and redox reagents in the presence of starch. Two colourless solutions are mixed and at first there is no visible reaction. After a short time delay, the liquid suddenly turns to a shade of dark blue due to the ...
English: Video of iodine clock reaction. Potassium persulphate is used to oxidize iodide ions to iodine, in the presence of starch and a small amount of thiosulphate ions. When the thiosulphate is exhausted (by reaction with the iodine produced), the dark blue iodine-starch complex is formed.
Some cases of reaction to povidone-iodine (Betadine) have been documented to be a chemical burn. [83] Medical use of iodine compounds (i.e. as a contrast agent) can cause anaphylactic shock in highly sensitive patients, presumably due to sensitivity to the chemical carrier. Cases of sensitivity to iodine compounds should not be formally ...
Starch is a substance common to most plant cells and so a weak iodine solution will stain starch present in the cells. Iodine is one component in the staining technique known as Gram staining, used in microbiology. Used as a mordant in Gram's staining, iodine enhances the entrance of the dye through the pores present in the cell wall/membrane ...
Iodine (I) can be used to determine whether fruits are ripening or rotting by showing whether the starch in the fruit has turned into sugar. For example, a drop of iodine on a slightly rotten part (not the skin) of an apple will stay yellow or orange, since starch is no longer present.
If you've been having trouble with any of the connections or words in Thursday's puzzle, you're not alone and these hints should definitely help you out. Plus, I'll reveal the answers further down
Amylose A is a parallel double-helix of linear chains of glucose. Amylose is made up of α(1→4) bound glucose molecules. The carbon atoms on glucose are numbered, starting at the aldehyde (C=O) carbon, so, in amylose, the 1-carbon on one glucose molecule is linked to the 4-carbon on the next glucose molecule (α(1→4) bonds). [3]