Search results
Results from the WOW.Com Content Network
The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .
As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge. The divergence of a tensor field of non-zero order k is written as =, a contraction of a tensor field of order k − 1. Specifically, the divergence of a vector is a scalar.
Unlike three dimensions, there are many tables because every pair of unit vectors is perpendicular to five other unit vectors, allowing many choices for each cross product. Once we have established a multiplication table, it is then applied to general vectors x and y by expressing x and y in terms of the basis and expanding x × y through ...
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
In this sense, the unit dyadic ij is the function from 3-space to itself sending a 1 i + a 2 j + a 3 k to a 2 i, and jj sends this sum to a 2 j. Now it is revealed in what (precise) sense ii + jj + kk is the identity: it sends a 1 i + a 2 j + a 3 k to itself because its effect is to sum each unit vector in the standard basis scaled by the ...
The cross product in relation to the exterior product. In red are the unit normal vector, and the "parallel" unit bivector. For example, torque is generally defined as the magnitude of the perpendicular force component times distance, or work per unit angle.
In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in ^ (pronounced "v-hat"). The normalized vector û of a non-zero vector u is the unit vector in the direction of u, i.e.,
The cross product can also be described in terms of quaternions, and this is why the letters i, j, k are a convention for the standard basis on R3. The unit vectors i, j, k correspond to "binary" (180 deg) rotations about their respective axes, said rotations being represented by "pure" quaternions (zero real part) with unit norms.