Search results
Results from the WOW.Com Content Network
As an example, an early turbojet, the Bristol Olympus Mk. 101, had a momentum thrust of 9300 lb. and a pressure thrust of 1800 lb. giving a total of 11,100 lb. [1] Looking inside the "black box" shows that the thrust results from all the unbalanced momentum and pressure forces created within the engine itself. [2]
The thrust-to-weight ratio is usually calculated from initial gross weight at sea level on earth [6] and is sometimes called thrust-to-Earth-weight ratio. [7] The thrust-to-Earth-weight ratio of a rocket or rocket-propelled vehicle is an indicator of its acceleration expressed in multiples of earth's gravitational acceleration, g 0. [5]
If a powered aircraft is generating thrust T and experiencing drag D, the difference between the two, T − D, is termed the excess thrust. The instantaneous performance of the aircraft is mostly dependent on the excess thrust. Excess thrust is a vector and is determined as the vector difference between the thrust vector and the drag vector.
Thrust is the force supplied by the engine and depends on the propellant mass flow through the engine. Specific impulse measures the thrust per propellant mass flow. Thrust and specific impulse are related by the design and propellants of the engine in question, but this relationship is tenuous: in most cases, high thrust and high specific ...
The flex temp procedure recognizes that an ambient temperature beyond the flat rating produces less thrust. If a lower-than-flat-rated thrust is calculated for a particular take-off that thrust can be specified by where it coincides with the EGT limit. This false ambient temperature is the flex temp. [3]
Specific thrust is the thrust per unit air mass flowrate of a jet engine (e.g. turbojet, turbofan, etc.) and can be calculated by the ratio of net thrust/total intake airflow. [1] Low specific thrust engines tend to be more efficient of propellant (at subsonic speeds), but also have a lower effective exhaust velocity and lower maximum airspeed.
TSFC or SFC for thrust engines (e.g. turbojets, turbofans, ramjets, rockets, etc.) is the mass of fuel needed to provide the net thrust for a given period e.g. lb/(h·lbf) (pounds of fuel per hour-pound of thrust) or g/(s·kN) (grams of fuel per second-kilonewton). Mass of fuel is used, rather than volume (gallons or litres) for the fuel ...
The type of jet engine used to explain the conversion of fuel into thrust is the ramjet.It is simpler than the turbojet which is, in turn, simpler than the turbofan.It is valid to use the ramjet example because the ramjet, turbojet and turbofan core all use the same principle to produce thrust which is to accelerate the air passing through them.