Search results
Results from the WOW.Com Content Network
Then is called a pivotal quantity (or simply a pivot). Pivotal quantities are commonly used for normalization to allow data from different data sets to be compared. It is relatively easy to construct pivots for location and scale parameters: for the former we form differences so that location cancels, for the latter ratios so that scale cancels.
A ancillary statistic is a specific case of a pivotal quantity that is computed only from the data and not from the parameters. They can be used to construct prediction intervals . They are also used in connection with Basu's theorem to prove independence between statistics.
Download as PDF; Printable version; In other projects ... the t statistic is a useful "pivotal quantity" in the case when the ... threshold is calculated by this ...
The theorem states that any estimator that is unbiased for a given unknown quantity and that depends on the data only through a complete, sufficient statistic is the unique best unbiased estimator of that quantity. The Lehmann–Scheffé theorem is named after Erich Leo Lehmann and Henry Scheffé, given their two early papers. [2] [3]
The latter can be updated using the pivotal column and the first row of the tableau can be updated using the (pivotal) row corresponding to the leaving variable. Both the pivotal column and pivotal row may be computed directly using the solutions of linear systems of equations involving the matrix B and a matrix-vector product using A.
In mathematical statistics, the Fisher information is a way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ of a distribution that models X.
The information bottleneck method is a technique in information theory introduced by Naftali Tishby, Fernando C. Pereira, and William Bialek. [1] It is designed for finding the best tradeoff between accuracy and complexity (compression) when summarizing (e.g. clustering) a random variable X, given a joint probability distribution p(X,Y) between X and an observed relevant variable Y - and self ...
The cumulants of a random variable X are defined using the cumulant-generating function K(t), which is the natural logarithm of the moment-generating function: = []. ...