Ad
related to: intersecting secants theorem geometrykutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
In Euclidean geometry, the intersecting secants theorem or just secant theorem describes the relation of line segments created by two intersecting secants and the ...
Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .
In geometry, a secant is a line that intersects a curve at a minimum of two distinct points. [1] ... sometimes called the intersecting secants theorem, ...
In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's Elements.
If a chord were to be extended infinitely on both directions into a line, the object is a secant line. The perpendicular line passing through the chord's midpoint is called sagitta (Latin for "arrow"). More generally, a chord is a line segment joining two points on any curve, for instance, on an ellipse.
The tangent-secant theorem can be proven using similar triangles (see graphic). Like the intersecting chords theorem and the intersecting secants theorem, the tangent-secant theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle, namely, the power of point theorem.
By the secant-tangent theorem, the square of this tangent length equals the power of the point P in the circle C. This power equals the product of distances from P to any two intersection points of the circle with a secant line passing through P. The angle θ between a chord and a tangent is half the arc belonging to the chord.
Intercept theorem (Euclidean geometry) Intersecting chords theorem (Euclidean geometry) Intersecting secants theorem (Euclidean geometry) Intersection theorem (projective geometry) Inverse eigenvalues theorem (linear algebra) Inverse function theorem (vector calculus) Ionescu-Tulcea theorem (probability theory) Isomorphism extension theorem ...
Ad
related to: intersecting secants theorem geometrykutasoftware.com has been visited by 10K+ users in the past month