Search results
Results from the WOW.Com Content Network
In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .
Brent's method is a combination of the bisection method, the secant method and inverse quadratic interpolation. At every iteration, Brent's method decides which method out of these three is likely to do best, and proceeds by doing a step according to that method. This gives a robust and fast method, which therefore enjoys considerable popularity.
Since the secant method can carry out twice as many steps in the same time as Steffensen's method, [b] in practical use the secant method actually converges faster than Steffensen's method, when both algorithms succeed: The secant method achieves a factor of about (1.6) 2 ≈ 2.6 times as many digits for every two steps (two function ...
A standard method of evaluating the secant integral presented in various references involves multiplying the numerator and denominator by sec θ + tan θ and then using the substitution u = sec θ + tan θ. This substitution can be obtained from the derivatives of secant and tangent added together, which have secant as a common factor. [6]
The idea to combine the bisection method with the secant method goes back to Dekker (1969).. Suppose that we want to solve the equation f(x) = 0.As with the bisection method, we need to initialize Dekker's method with two points, say a 0 and b 0, such that f(a 0) and f(b 0) have opposite signs.
In numerical analysis, the ITP method (Interpolate Truncate and Project method) is the first root-finding algorithm that achieves the superlinear convergence of the secant method [1] while retaining the optimal [2] worst-case performance of the bisection method. [3]
The similarity yields an equation for ratios which is equivalent to the equation of the theorem given above: = | | | | = | | | | Next to the intersecting chords theorem and the tangent-secant theorem , the intersecting secants theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle ...
This three step procedure guarantees that the minmax properties of the bisection method are enjoyed by the estimate as well as the superlinear convergence of the secant method. And, is observed to outperform both bisection and interpolation based methods under smooth and non-smooth functions.