Search results
Results from the WOW.Com Content Network
The chloralkali process (also chlor-alkali and chlor alkali) is an industrial process for the electrolysis of sodium chloride (NaCl) solutions. It is the technology used to produce chlorine and sodium hydroxide (caustic soda), [ 1 ] which are commodity chemicals required by industry.
The Castner–Kellner process is a method of electrolysis on an aqueous alkali chloride solution (usually sodium chloride solution) to produce the corresponding alkali hydroxide, [1] invented by American Hamilton Castner and Austrian Carl Kellner in the 1890s.
Sodium chloride (NaCl) melts at 801 °C (1074 Kelvin), but a salt mixture can be kept liquid at a temperature as low as 600 °C at the mixture containing, by weight: 33.2% NaCl and 66.8% CaCl 2. If pure sodium chloride is used, a metallic sodium emulsion is formed in the molten NaCl which is impossible to separate.
In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction.Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell.
Chlorine can be manufactured by the electrolysis of a sodium chloride solution , which is known as the Chloralkali process. The production of chlorine results in the co-products caustic soda (sodium hydroxide, NaOH) and hydrogen gas (H 2). These two products, as well as chlorine itself, are highly reactive.
A low voltage DC current is applied, electrolysis happens producing sodium hypochlorite and hydrogen gas (H 2). The solution travels to a tank that separates the hydrogen gas based on its low density. [1] Only water and sodium chloride are used. The simplified chemical reaction is: NaCl + H 2 O + energy → NaOCl + H 2 [citation needed]
Considering the industrial production of hydrogen, and using current best processes for water electrolysis (PEM or alkaline electrolysis) which have an effective electrical efficiency of 70–80%, [68] [73] [74] producing 1 kg of hydrogen (which has a specific energy of 143 MJ/kg) requires 50–55 kW⋅h (180–200 MJ) of electricity.
Note: ρ is density, n is refractive index at 589 nm, [clarification needed] and η is viscosity, all at 20 °C; T eq is the equilibrium temperature between two phases: ice/liquid solution for T eq < 0–0.1 °C and NaCl/liquid solution for T eq above 0.1 °C.