enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. T-norm fuzzy logics - Wikipedia

    en.wikipedia.org/wiki/T-norm_fuzzy_logics

    Involutive negation (unary) can be added as an additional negation to t-norm logics whose residual negation is not itself involutive, that is, if it does not obey the law of double negation . A t-norm logic L {\displaystyle L} expanded with involutive negation is usually denoted by L ∼ {\displaystyle L_{\sim }} and called L {\displaystyle L ...

  3. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...

  4. Dagger category - Wikipedia

    en.wikipedia.org/wiki/Dagger_category

    In this example, a self-adjoint morphism is a symmetric relation. The category Cob of cobordisms is a dagger compact category , in particular it possesses a dagger structure. The category Hilb of Hilbert spaces also possesses a dagger structure: Given a bounded linear map f : A → B {\displaystyle f:A\rightarrow B} , the map f † : B → A ...

  5. T-norm - Wikipedia

    en.wikipedia.org/wiki/T-norm

    Many properties of t-conorms can be obtained by dualizing the properties of t-norms, for example: For any t-conorm ⊥, the number 1 is an annihilating element: ⊥(a, 1) = 1, for any a in [0, 1]. Dually to t-norms, all t-conorms are bounded by the maximum and the drastic t-conorm:

  6. Negation - Wikipedia

    en.wikipedia.org/wiki/Negation

    As a further example, negation can be defined in terms of NAND and can also be defined in terms of NOR. Algebraically, classical negation corresponds to complementation in a Boolean algebra, and intuitionistic negation to pseudocomplementation in a Heyting algebra. These algebras provide a semantics for classical and intuitionistic logic.

  7. Semigroup with involution - Wikipedia

    en.wikipedia.org/wiki/Semigroup_with_involution

    In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group:

  8. Resolution (logic) - Wikipedia

    en.wikipedia.org/wiki/Resolution_(logic)

    A literal is a propositional variable or the negation of a propositional variable. Two literals are said to be complements if one is the negation of the other (in the following, is taken to be the complement to ). The resulting clause contains all the literals that do not have complements. Formally:

  9. Negation as failure - Wikipedia

    en.wikipedia.org/wiki/Negation_as_failure

    Negation As Failure (NAF, for short) is a non-monotonic inference rule in logic programming, used to derive (i.e. that is assumed not to hold) from failure to derive . Note that n o t p {\displaystyle \mathrm {not} ~p} can be different from the statement ¬ p {\displaystyle \neg p} of the logical negation of p {\displaystyle p} , depending on ...