Search results
Results from the WOW.Com Content Network
The sum of the reciprocals of the powerful numbers is close to 1.9436 . [4] The reciprocals of the factorials sum to the transcendental number e (one of two constants called "Euler's number"). The sum of the reciprocals of the square numbers (the Basel problem) is the transcendental number π 2 / 6 , or ζ(2) where ζ is the Riemann zeta ...
The Basel problem asks for the precise summation of the reciprocals of the squares of the natural numbers, i.e. the precise sum of the infinite series: = = + + +. The sum of the series is approximately equal to 1.644934. [ 3 ]
While the partial sums of the reciprocals of the primes eventually exceed any integer value, they never equal an integer. One proof [6] is by induction: The first partial sum is 1 / 2 , which has the form odd / even . If the n th partial sum (for n ≥ 1) has the form odd / even , then the (n + 1) st sum is
The harmonic number with = ⌊ ⌋ (red line) with its asymptotic limit + (blue line) where is the Euler–Mascheroni constant.. In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers: [1] = + + + + = =.
A taxicab number is the smallest integer that can be expressed as a sum of two positive third powers in n distinct ways. The Riemann zeta function is the sum of the reciprocals of the positive integers each raised to the power s, where s is a complex number whose real part is greater than 1.
Each of these numbers having no '9' is greater than or equal to 10 n−1, so the reciprocal of each of these numbers is less than or equal to 10 1−n. Therefore, the contribution of this group to the sum of reciprocals is less than 8 × ( 9 / 10 ) n−1. Therefore the whole sum of reciprocals is at most
The convergence to Brun's constant. In number theory, Brun's theorem states that the sum of the reciprocals of the twin primes (pairs of prime numbers which differ by 2) converges to a finite value known as Brun's constant, usually denoted by B 2 (sequence A065421 in the OEIS).
In the limit, the sum of the reciprocals of the primes < n and the function ln(ln n) are separated by a constant, the Meissel–Mertens constant (labelled M above). The Meissel-Mertens constant (named after Ernst Meissel and Franz Mertens), also referred to as the Mertens constant, Kronecker's constant, Hadamard-de la Vallée-Poussin constant, or the prime reciprocal constant, is a ...