Search results
Results from the WOW.Com Content Network
The absolute bioavailability is the dose-corrected area under curve (AUC) non-intravenous divided by AUC intravenous. The formula for calculating the absolute bioavailability, F, of a drug administered orally (po) is given below (where D is dose administered).
Absolute bioavailability refers to the bioavailability of a drug when administered via an extravascular dosage form (i.e. oral tablet, suppository, subcutaneous, etc.) compared with the bioavailability of the same drug administered intravenously (IV). This is done by comparing the AUC of the non-intravenous dosage form with the AUC for the drug ...
Pharmacokinetics is based on mathematical modeling that places great emphasis on the relationship between drug plasma concentration and the time elapsed since the drug's administration. Pharmacokinetics is the study of how an organism affects the drug, whereas pharmacodynamics (PD) is the study of how the drug affects the organism.
In pharmacokinetics, a loading dose is an initial higher dose of a drug that may be given at the beginning of a course of treatment before dropping down to a lower maintenance dose. [1] A loading dose is most useful for drugs that are eliminated from the body relatively slowly, i.e. have a long systemic half-life.
Lipinski's rule of five, also known as Pfizer's rule of five or simply the rule of five (RO5), is a rule of thumb to evaluate druglikeness or determine if a chemical compound with a certain pharmacological or biological activity has chemical properties and physical properties that would likely make it an orally active drug in humans.
The drug apparent permeability (P app) is calculated by normalizing the drug flux (j) over the initial concentration of the API in the donor compartment (c 0) as: Equation 2: = / Dimensionally, the P app represents a velocity, and it is normally expressed in cm/sec. The highest is the permeability, the highest is expected to be the ...
For example, if a drug compound showed lower-than-expected oral bioavailability, various model structures (i.e., hypotheses) and parameter values can be evaluated to determine which models and/or parameters provide the best fit to the observed data.
TPSA is a valuable tool in drug discovery and development. By analyzing a drug candidate's TPSA, scientists can predict its potential for oral bioavailability and ability to reach target sites within the body. This prediction hinges on a drug's ability to permeate biological barriers.