Search results
Results from the WOW.Com Content Network
Java Apache License 2.0 Java and C client, HTTP, FUSE [8] transparent master failover No Reed-Solomon [9] File [10] 2005 IPFS: Go Apache 2.0 or MIT HTTP gateway, FUSE, Go client, Javascript client, command line tool: Yes with IPFS Cluster: Replication [11] Block [12] 2015 [13] JuiceFS: Go Apache License 2.0 POSIX, FUSE, HDFS, S3: Yes Yes Reed ...
Examples of the latter include the exhaustive methods such as depth-first search and breadth-first search, as well as various heuristic-based search tree pruning methods such as backtracking and branch and bound. Unlike general metaheuristics, which at best work only in a probabilistic sense, many of these tree-search methods are guaranteed to ...
We should either have only a pseudocode implementation, or maybe Python or some other reads-mostly-like-pseudocode language if it can be made sufficiently close to pseudocode. The fact that java.util.LinkedList is in the example suggests to me that the example says more about Java than about BFS. —Ben FrantzDale 12:53, 11 May 2010 (UTC)
In depth-first search (DFS), the search tree is deepened as much as possible before going to the next sibling. To traverse binary trees with depth-first search, perform the following operations at each node: [3] [4] If the current node is empty then return. Execute the following three operations in a certain order: [5] N: Visit the current node.
If G is a tree, replacing the queue of this breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [10]
Animated example of a depth-first search For the following graph: a depth-first search starting at the node A, assuming that the left edges in the shown graph are chosen before right edges, and assuming the search remembers previously visited nodes and will not repeat them (since this is a small graph), will visit the nodes in the following ...
The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms. For instance, BFS is used by Dinic's algorithm to find maximum flow in a graph.
For breadth-first search it doesn't affect the correctness of the algorithm whether you do the check before enqueueing or after dequeueing. But for depth-first search, it does matter. The paragraph below the part you quoted tries to point this out, maybe somewhat unclearly. It could be improved, perhaps.